jueves, 8 de septiembre de 2016

Cálculo Diferencial




Cálculo Diferencial.

El cálculo diferencial es una parte del análisis matemático que consiste en el estudio de cómo cambian las funciones cuando sus variables cambian. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.
El estudio del cambio de una función es de especial interés para el cálculo diferencial, en concreto el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.

Aplicaciones importantes del cálculo diferencial


Recta tangente a una función en un punto

La recta tangente a una función f(x) es como se ha visto el límite de las rectas secantes cuando uno de los puntos de corte de la secante con la función se hace tender hacia el otro punto de corte. También puede definirse a la recta tangente como la mejor aproximación lineal a la función en su punto de tangencia, esto es, la recta tangente es la función polinómica de primer grado que mejor aproxima a la función localmente en el punto de tangencia considerado.
Si se conoce la ecuación de la recta tangente Ta(x) a la función f(x) en el punto a puede tomarse Ta(x) como una aproximación razonablemente buena de f(x) en las proximidades del punto a. Esto quiere decir que, si se toma un punto a + h y se evalúa tanto en la función como en la recta tangente, la diferencia  será despreciable frente a h en valor absoluto si h tiende a cero. Cuanto más cerca se esté del punto a tanto más precisa será la aproximación de f(x).
Para una función f(x) derivable localmente en el punto a, la recta tangente a f(x) por el punto a es:
Ta(x)= f(a) + f '(a)(x-a).

Uso de las derivadas para realizar gráficos de funciones

Las derivadas son una herramienta útil para examinar las gráficas de funciones. En particular, los puntos en el interior de un dominio de una función de valores reales que llevan a dicha función a un extremo local tendrán una primera derivada de cero. Sin embargo, no todos los puntos críticos son extremos locales. Por ejemplo, f(x)=x³ tiene un punto crítico en x=0, pero en ese punto no hay un máximo ni un mínimo. El criterio de la primera derivada y el criterio de la segunda derivada permiten determinar si los puntos críticos son máximos, mínimos o ninguno.
En el caso de dominios multidimensionales, la función tendrá una derivada parcial de cero con respecto a cada dimensión en un extremo local. En este caso, la prueba de la segunda derivada se puede seguir utilizando para caracterizar a los puntos críticos, considerando el eigenvalor de la matriz Hessiana de las segundas derivadas parciales de la función en el punto crítico. Si todos los eigenvalores son positivos, entonces el punto es un mínimo local; si todos son negativos, entonces es un máximo local. Si hay algunos eigenvalores positivos y algunos negativos, entonces el punto crítico es un punto silla, y si no se cumple ninguno de estos casos, la prueba es no concluyente (es decir, los engeivalores son 0 y 3).
Una vez que se encuentran los extremos locales, es mucho más fácil hacerse de una burda idea de la gráfica general de la función, ya que (en el caso del dominio monodimensional) se incrementará o decrementará uniformemente excepto en los puntos críticos, y por ello (suponiendo su continuidad) tendrá valores intermedios entre los valores en los puntos críticos de cada lado.






No hay comentarios:

Publicar un comentario